Pengukuran Nilai Rata-Rata RQD Dan Pola Penyebarannya Pada Level 1950-2950 Areal Tambang Bawah Tanah (DMLZ) PT. Freeport Indonesia

Mapuay Menasye Theo Afasedanja^{1*}, Obed Patiung²

^{1,2} Program Studi Teknik Pertambangan, Politeknik Amamapare Timika, JL. C Heatubun, Kwamki Baru, 99910, Kwamki, Kec. Mimika Baru, Kabupaten Mimika, Papua 99971

*Corresponding Author E-mail Address: mapuayafase87@gmail.com

ABSTRAK

Karakteristik batuan yang beragam sangat mempengaruhi dalam perencanaan desain sebuah lokasi penambangan juga dipengaruhi oleh faktor geologi lainnya. Perhitungan dan pengklasifikasian massa batuan sangat penting dilakukan untuk rancangan terowongan pada tambang bawah tanah. pada bidang Geologi Teknik untuk mengklasifikasikan sebuah masa batuan,salah satu metode yang sering digunakan adalah Rock Quality Designation (*RQD*) yang bertujuan untuk mengetahui kualitas dari sebuah sampel core berdasarkan data hole yang ada. Tujuan Penelitian ini untuk mengetahui nilai rata-rata RQD berdasarkan data Hole dan Pola Penyebarannya pada level 1950-2950 tambang bawah tanah DMLZ PT. Freeport Indonesia. Metode yang digunakan meliputi pengumpulan data dilapangan dan analisis melaui data hole yang tersedia. Dari hasil penelitian terdapat 54 hole dengan luasan area ± 700m² x 1.05 m² menunjukan kualitas RQD rendah (0-25%) kontur berwana biru, RQD sedang (25-75%) kontur berwarna hijau dan kualitas RQD yang baik (75-100 %) ditunjukan dengan kontur berwarna kuning,yang mana daerah itu didominasi oleh jenis batuan diorite exoskarn dan sedimen.

Kata Kunci: Hole, RQD, Diorite, Sedimen

ABSTRACT

Mining is a production activity that cannot be separated from the waste generated from mining, for example the waste produced includes metal waste which if it exceeds the above threshold value will have a negative impact on the surrounding environment. Marine pollution is defined as a negative impact (harmful effect) on the life of biota, resources, the comfort of marine ecosystems, either caused directly or indirectly by the disposal of materials or waste into the sea originating from human activities. The purpose of this research is to determine the content of metal minerals in sediment deposits in the Amamapare river Timika. The research method used was direct observation in the field by sampling at 3 stations. The three samples were then analyzed using the X-Ray Fluorescence method at the Hasanuddin University Makassar Laboratory. Based on the results of X-Ray Flourescence (XRF) analysis on 3 samples in the sediment area at the estuary of the Amamapare River, there are 10 metal mineral elements in the form of Silicon dioxide (SiO2), Aluminum oxide (Al2O3), Titanium dioxide (TiO2), Magnesium oxide (MgO), Iron (III) oxide (Fe2O3), Calcium oxide (CaO), Sodium oxide (Na2O), Potassium oxide (K2O), Manganese (II) oxide (MnO), Phosphorus phenthoxide (P2O5).

Keywords: Beach Sediments, Metal Minerals, Geochemistry, XRF

PENDAHULUAN

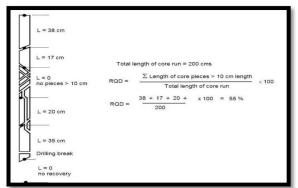
RQD dikembangkan pada tahun 1964 oleh Metode ini didasarkan penghitungan persentase inti terambil yang mempunyai panjang 10 cm atau lebih. Dalam hal ini, inti terambil yang lunak atau tidak tidak perlu dihituna walaupun panjang dari mempunyai lebih 10cm. Diameter inti optimal yaitu 47.5mm. Nilai dapat pula RQD dipakai untuk ini memperkirakan penyanggaan terowongan. Saan ini RQD sebagai parameter standar dalam pemerian inti pemboran merupakan salah satu parameter dalam penentuan klasifikasi massa batuan. RQD merupakan salah satu parameter yang digunakan untuk perhitungan rock mass rating (RMR). Penyebaran kualitas batuan akan sangat membantu dalam memberikan informasi kondisi batuan setempat. Oleh karena itu, perlu dilakukan studi tentang pola penyebaran berdasarkan data RQD untuk proses pengambilan keputusan perencanaan desain tambang.

METODE PENELITIAN

Penelitian ini didasari oleh beberapa tahapan yaitu Pengambilan data RQD meliputi jumlah joint pada setiap patahan yang ada pada sampel core dan kemudian data tersebut akan di olah dalam bentuk hole yang dihitung dalam excel dan terakhir akan dibuatkan pola penyebarannya menggunakan program surfer 16 sehingga membentuk pola penyebarannya

LOKASI PENGAMBILAN DATA

Lokasi pengambilan data berada pada PT. Eksplorasi Nusajaya Timika, jarak lokasi penelitian dapat ditempuh dengan menggunakan kendaraan roda dua/empat iarak tempuh 4.6 km dan membutuhkan waktu 10 menit menuju penelitian dari kampus Politeknik Amamapare Timika.


Gambar 1. Peta tunjuk lokasi Penelitian **HASIL DAN PEMBAHASAN**

Rata-rata keterdapatan banyaknya Sampel hasil Core Drilling yang ada pada PT. Eksplorasi Nusajaya Tiimika adalah merupakan sampel yang telah mengalami patahan alami yang berasal dari areal kerja ditambang bawah tanah DMLZ PT. Freeport Indonesia.

Gambar 2.kondisi sampel core yang ada

Pada perhitungan RQD menggunakan rumus Total Panjang sampel core 10cm dibagi total secara Panjang secara keseluruhan, kemudian dikali dengan 100 %.

Gambar 3. Rumus perhitungan RQD

Dari rumus perhitungan RQD diatas maka datanya akan diinput ke dalam MS excel,yang mana akan menjadi data hole yang berjumlah 54 hole untuk level 1950-2950. Yang dapat dilihat pada tabel dibawah ini.

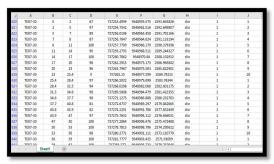
Tabel 1 Data Hole perhitungan RQD

all I	A	U	-	D		-	G	H		
1	HOLEID *	FROM *	TO w	RODRO *	mid_x *	mid_y =	mid_z ×	Lithology *	Code_Lithology *	
2	TE01-35	330	333	100	737001.3899	9549185.368	2478.337326	dio	1	1
3	TE01-36	333	336	100	737003.1421	9549188.678	2477.568584	dio	1	2
4	TE01-36	336	339	100	737004.8944	9549190.989	2476.801298	dio	1	3
5	TE01-36	339	342	100	737006.6462	9549193.3	2476.032683	dio	1	4
6	TE01-36	342	345	100	737008.3992	9549195.609	2475.260778	dio	1	5
7	TE01-36	345	348	100	737010.156	9549197.915	2474.486534	dio	1	6
8	TE01-35	348	349.3	86	737011.4144	9549199,568	2473.934342	dio	1	7
9	TE01-36	349.3	351	89	737012.292	9549200.722	2473.549183	dio	1	8
10	TE01-36	351	354	100	737013.6671	9549202.529	2472.945065	dio	1	9
11	TE01-36	354	357	100	737015.4249	9549204.835	2472.173856	dio	1	10
12	TE01-36	357	360	100	737017.184	9549207.139	2471.40075	dio	1	1
13	TE01-36	360	363	100	737018.9446	9549209.44	2470.62423	dio	1	2
14	TE01-36	363	366	100	737020,7055	9549211.741	2469.844423	dio	1	3
15	TE01-35	365	369	100	737022.468	9549214.04	2469.065121	dio	1	4
16	TE01-36	369	372	100	737024.2325	9549216.337	2468.285124	dio	1	5
17	TE01-36	372	375	100	737025.9962	9549218.635	2467,504116	dio	1	6
18	TE01-36	375	378	100	737027.7636	9549220.929	2466.72216	dio	1	7
19	TE01-36	378	381	100	737029.5339	9549223-221	2465.939509	dio	1	8
20	TE01-36	381	384	98	737031.3044	9549225.513	2465.155721	dio	1	9
21	THO1-36	384	387	100	737033.0758	9549227.804	2464.371996	dio	1	10
22	TERT 26	297	290	100	72 WIZA 9494	95,49120,792	3462 507629	dia	1	
		Sheet1	•							

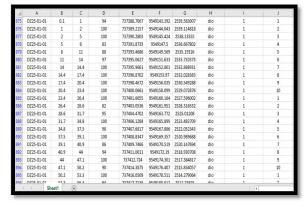
Berdasarkan dara Hole perhitungan RQD diatas diketahui bahwa kondisi core yang ada yaitu :

RQD %	KUALITAS
0-25	Rendah
25-50	Sedang
50-100	Baik

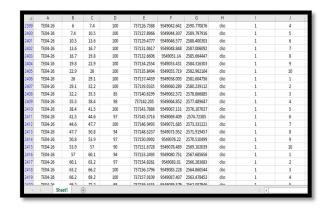
Sedangkan untuk mengetahui data pola penyebarannya berdasarkan data hole RQD diatas maka di buatkan data dalam bentuk excel pada tiap kedalaman hole,mulai dari hole terendah sampai pada hole tertinggi,yang mana datanya dapat dilihat pada table-tabel dibawah ini :

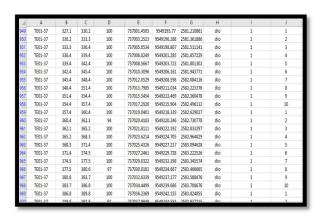

Tabel 2 Data Holes TE03-25

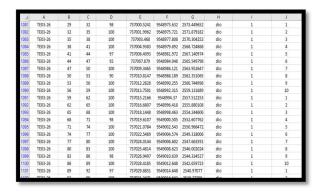
1	A	8	C	D	E	F	G	Н	1	J
151	TE03-25	23.8	26.8	100	737000.439	9548972.557	2583.652136	dio	1	1
152	TE03-25	26.8	29.8	100	737002.1795	9548974.943	2583.122536	dio	1	2
153	TE03-25	29.8	32.8	98	737003.9187	9548977.329	2582.591282	dio	1	3
154	TE03-25	32.8	35.8	96	737005.6549	9548979.717	2582.060028	dio	1	4
155	TE03-25	35.8	38.8	100	737007.3901	9548982.106	2581.529741	dio	1	5
156	TE03-25	38.8	41.8	100	737009.1234	9548984.498	2581.007141	dio	1	6
157	TE03-25	41.8	44.8	82	737010.8593	9548986.889	2580.486196	dio	1	7
158	TE03-25	44.8	47.8	93	737012.5962	9548989.279	2579.965252	dio	1	8
159	TE03-25	47.8	50.8	98	737014.3366	9548991.666	2579.443823	dio	1	9
160	TE03-25	50.8	53.8	98	737016.0804	9548994.05	2578.91855	dio	1	10
161	TE03-25	53.8	56.8	100	737017.8248	9548996.433	2578.39245	dio	1	1
162	TE03-25	56.8	59.8	100	737019.5691	9548998.817	2577.86635	dio	1	2
163	TE03-25	59.8	62.8	100	737021.313	9549001.2	2577.339766	dio	1	3
164	TE03-25	62.8	65.8	67	737023.0534	9549003.586	2576.809339	dio	1	4
165	TE03-25	65.8	68.4	57	737024.6768	9549005.813	2576.313502	dio	1	5
166	TE03-25	68.4	71.4	89	737026.2973	9549008.042	2575.817664	dio	1	6
167	TE03-25	71.4	74.5	97	737028.0584	9549010.472	2575.277297	dio	1	7
168	TE03-25	74.5	77.6	54	737029.847	9549012.943	2574.724213	dio	1	8
169	TE03-25	77.6	80.7	91	737031.6355	9549015.414	2574.169548	dio	1	9
170	TE03-25	80.7	83.8	98	737033.4235	9549017.884	2573.610918	dio	1	10
171	TE03-25	83.8	86.8	100	737035.1826	9549020.314	2573.060818	dio	1	1
173	TE02.15	05.0	90.0	100	727026 0127	95/19022 205	2572 522504	dia	- 1	

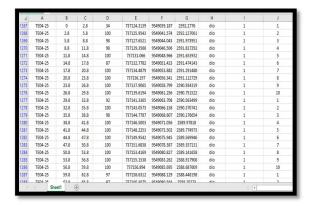

Tabel 3 Data Holes TE05-22

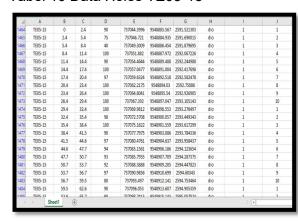
-4	A	8	C	D	E	F	G	н	1	J
386	TE06-22	0	2.4	69	737200.9464	9548989.992	2594.771461	dio	1	1
387	TE06-22	2.4	5.4	77	737202.5561	9548992.158	2594.861451	dio	1	2
388	TE06-22	5.4	8.4	100	737204.3439	9548994.565	2594.952778	dio	1	3
389	TE06-22	8.4	11.4	100	737206.1319	9548996.972	2595.037355	dio	1	4
390	TE06-22	11.4	14.4	100	737207.92	9548999.38	2595.112745	dio	1	5
391	TE06-22	14.4	17.4	100	737209.7082	9549001.788	2595.177666	dio	1	6
392	TE06-22	17.4	20.4	100	737211.4967	9549004.196	2595.240833	dio	1	7
393	TE06-22	20.4	23.5	100	737213.3151	9549006.637	2595.425379	dio	1	8
394	TE06-22	23.5	26.6	100	737215.1705	9549009.119	2595.509364	dio	1	9
395	TE06-22	26.6	28.3	88	737216.6105	9549011.039	2595.535544	dio	1	10
396	TE06-22	28.3	29.8	100	737217.5712	9549012.318	2595.551135	dio	1	1
397	TE06-22	29.8	32.8	100	737218.9221	9549014.117	2595.570049	dio	1	2
398	TE06-22	32.8	35.8	100	737220.7233	9549016.516	2595.586455	dio	1	3
399	TE06-22	35.8	38.8	93	737222.5249	9549018.915	2595.592389	dio	1	.4
400	TE06-22	38.8	41.8	90	737224.3297	9549021.311	2595.588343	dio	1	5
401	TE06-22	41.8	44.8	100	737226.1352	9549023.707	2595.57822	dio	1	6
402	TE06-22	44.8	47.8	100	737227.9406	9549026.103	2595.561878	dio	1	7
403	TE06-22	47.8	50.8	100	737229.7463	9549028.499	2595.532002	dio	1	8
404	TE06-22	50.8	53.8	100	737231.5551	9549030.892	2595.491305	dio	1	9
405	TE06-22	53.8	56.8	100	737233.3645	9549033.284	2595.444532	dio	1	10
405	TE06-22	56.8	59.8	100	737235.1739	9549035.677	2595.392524	dio	1	1
407	TE06.22	EQ 0	62.0	100	727726 9221	95,49029,069	2595 224799	dia		2
		Sheet1	(±)						1 4	

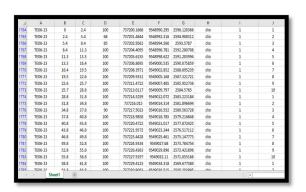

Tabel 4 Data Holes TE07-30

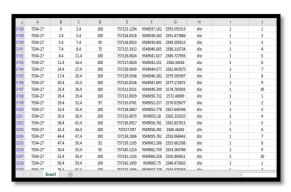

Tabel 5 Data Holes DZ25-01-01

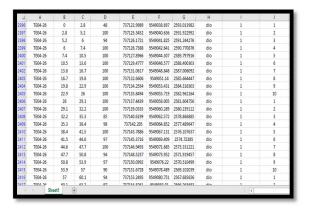

Tabel 6 Data Holes TE04-26

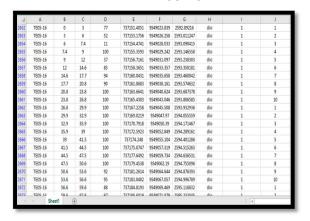

Tabel 7 Data Holes TE01-37

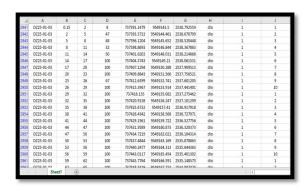

Tabel 8 Data Holes TE03-26

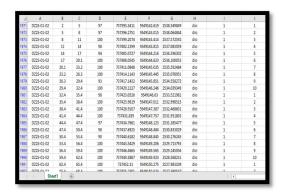

Tabel 9 Data Holes TE04-25


Tabel 10 Data Holes TE05-15

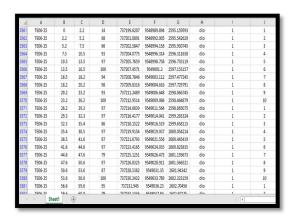

Tabel 11 Data Holes TE06-23

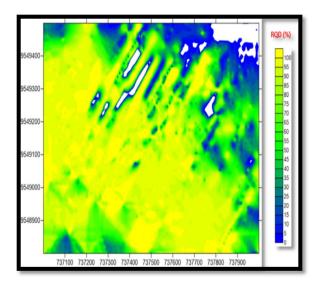

Tabel 12 Data Holes DZ25-01-02


Tabel 13 Data Holes TE04-26


Tabel 14 Data Holes TE05-16

Tabel 15 Data Holes DZ25-01-03


Tabel 16 Data Holes TE04-27


Tabel 17 Data Holes TE05-17

4	A	В	C	D	E	F	G	Н	1	J
3383	TE05-17	0	3	72	737150.8848	9549023.176	2594.438565	dio	1	1
3384	TE05-17	3	6	97	737152.2505	9549025.061	2592.546032	dio	1	2
3385	TE05-17	6	7	79	737153.1599	9549026.31	2591.275785	dio	1	3
3386	TE05-17	7	9	98	737153.8417	9549027.243	2590.319985	dio	1	4
3387	TE05-17	9	12	98	737154.9778	9549028.796	2588.723513	dio	1	5
3388	TE05-17	12	15	100	737156.3418	9549030.66	2586.808722	dio	1	6
3389	TE05-17	15	18	100	737157.7096	9549032.528	2584.900993	dio	1	7
3390	TE05-17	18	21	97	737159.075	9549034.386	2582.982425	dio	1	8
3391	TE05-17	21	24	100	737160.4417	9549036.24	2581.060084	dio	1	9
3392	TE05-17	24	27	98	737161.81	9549038.09	2579.135233	dio	1	10
3393	TE05-17	27	30	98	737163.176	9549039.936	2577.204866	dio	1	1
3394	TE05-17	30	33	98	737164.5386	9549041.778	2575.267744	dio	1	2
3395	TE05-17	33	36	100	737165.8968	9549043.613	2573.32189	dio	1	3
3396	TE05-17	36	39	100	737167.2563	9549045.451	2571.379525	dio	1	4
3397	TE05-17	39	42	100	737168.6101	9549047.287	2569.431181	dio	1	5
3398	TE05-17	42	45	98	737169.9574	9549049.121	2567.475879	dio	1	6
3399	TE05-17	45	48	97	737171.3037	9549050.953	2565.519088	dio	1	7
3400	TE05-17	48	51	100	737172.6486	9549052.784	2563.559817	dio	1	8
3401	TE05-17	51	54	100	737173.9953	9549054.616	2561.60228	dio	1	9
3402	TE05-17	54	57	100	737175.3451	9549056.44	2559.640032	dio	1	10
3403	TE05-17	57	60	98	737176.6974	9549058.255	2557.671114	dio	1	1
MON	TENS 17	60	62	00	727179.0479	05/10/15/1 (15/1	202003-2220	dio	1	2

Tabel 18 Data Holes TE06-25

Dari hasil penginputan dara hole sebanyak 18 tabel mulai dari high – low berdasarkan data perhitungan rata-rata RQD diatas maka dapatlah dibuatkan pola penyebaran data RQDnya dengan menggunakan aplikasi surfer 16, yang dapat dilihat dibawa ini :

Gambar 4. Peta Penyebaran RQD pada level 1950-2950 areal kerja Tambang Bawah Tanah DMLZ PT. Freeport Indonesia

Peta penyebaran RQD dimana kontur berwarna biru menunjukkan kualitas RQD rendah (0-25%), dan dari warna hijau kualitas RQD berada sedang (25-75%) sedangkan yang berwarna kuning memiliki kualitas RQD yang baik (75-100%).

PENUTUP

Berdasarkan hasil penelitian di PT. Eksplorasi Nusajaya maka diketahui bahwa Nilai rata-rata RQD pada level 1950-2950 ditunjukan dengan kontur berwarna biru menunjukkan kualitas RQD rendah (0-25%), dan dari warna hijau kualitas RQD berada sedang (25-75%) sedangkan yang berwarna kuning memiliki kualitas RQD yang baik (75-100%). Sedangkan untuk pola penyebarannya didominasi oleh batuan Diorite Exoskarn dan Sedimen

REFERENSI

Van Bemmelen, R.W. 1949. The Geology of Indonesia, Martinus Nijhoff, The Hague.

Corbett, G.J. dan Leach, T.M. 1998. South west Pacific Rim Gold-Copper Systems: Structure, Alteration, and Mineralization. SEG Special Publication No. 6

Garwin, S.L. 2000. The Setting, Geometry and Timing of Intrusion-Related Hydrothermal Systems in The Vicinity of Batu Hijau Porphyry Copper-Gold Deposits, Sumbawa, Indonesia. Disertasi Doktor di University of Western Australia.

Singgih Saptono. 2019, Sistem Klasifikasi Massa Batuan untuk Tambang Terbuka. Lppm UPN Veteran Yogyakarta

Mapuay Afasedanya, 2020. Modul Petrologi & Mineralogi. Program Studi Teknik Pertambangan, Politeknik Amamapare Timika

Mapuay Menasye Theo Afasedanja, Obed Patiung, Nilam Sry Putri. 2022, Studi Kelayakan Batupasir Sebagai Bahan Dasar Bangunan Berdasarkan Uji Kuat Tekan (Compression Strength) Pada areal sekitar kali Iwaka Km 34, Timika – Papua. Jurnal Teknik Amata, Vol 3. (71-74)

Abd. Rahim. 2022 Analisis Penentuan Ground Support Recommendation Decline Cikoneng Underground Gold Mine Kebupaten Pandeglang Provinsi Banten. *Jurnal Teknik Amata*, Vol 3. (87-92)